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Traffic Jams in a Lattice-Gas Model
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We propose a simple lattice-gas model characterized by two states of atoms, the
"thermalized" state, which is the same as in the standard lattice-gas model, and
the "running" state, where the atoms jump in one direction only. The model
exhibits the existence of "traffice jams" (bunching of thermalized atoms in com-
pact groups), the nonlinear dependence of mobility on the jump probability,
and the hysteresis.

1. INTRODUCTION

Driven diffusive systems belong to the simplest models of nonequilibrium
statistical mechanics. These systems are characterized by a locally conserved
density, and a uniform external field sets up a steady mass current. The
systems of this class have a wide application area in modeling of charge
and mass transport in solids. Last years the driven diffusive models are
used in tribology, where the driving force emerges owing to motion of one
of two substrates separated by a thin atomic layer.

In the context of tribology, the generalized Frenkel-Kontorova (FK)
model has been studied recently(1). In this model, a one- or two-dimen-
sional atomic system is placed into the external periodic potential, and the
atomic current j in response to the dc driving force F is studied by solution
of Langevin motion equations. The simulation showed that the function
j(F) exhibits hysteresis: when the force increases, the system goes from the
low-mobility regime to the high-mobility state, where all atoms move with
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almost maximum velocity. But if the force is then decreased, the high-
mobility state persists till quite small values of F, and then jumps abruptly
to the low-mobility state. Besides, during the transition the atoms have a
tendency to be organized in compact groups of two different types, one
consisting only of slowly moving atoms (which resemble "traffic jams"),
and another of "running" atoms moving with the maximum velocity.

However, the FK model studied in(1) is too complicated to be studied
in all details. For this reason it is convenient to develop a more simple
model which will capture the most important features of the FK model.
Although in this case we lose the possibility of exactly predicting the
characteristics of a real physical object, a new sight on the problem could
help to understand the behavior of more realistic and complicated models.

Microscopically, the driven diffusive system may be modeled as a lat-
tice gas (LG) where particles occupy the sites with at most one particle per
site. The atoms jump stochastically to vacant nearest-neighbor sites, and
the external field biases jumps in the positive x direction(2). This model is
known as the partially asymmetric exclusion model (ASEP). Driven lattice
gases with hard-core repulsion traditionally are used to describe hopping
conductivity in solids. The extreme case of this model, the totally asym-
metric exclusion model has been solved exactly(3).

In the model mentioned above, an atom jumps to the right with the
probability a and to the left with the probability 1 -a, where 1 /2<a< 1.
The totally asymmetric exclusion model corresponds to the case of a = 1.
Recalling the FK model, the probability of a jump to the right at small dc
forces is approximately equal to
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where T is the temperature and a is the period of the external potential. At
a high driving force, F > F f , where Ffxne/a for the sinusoidal substrate
potential (here e is the height of the potential), the atom can jump only to
the right, because the potential barriers are totally degraded at these forces.
In the lattice gas model, this situation corresponds to the a = 1 case. Thus,
the parameter a plays the role of the driving force of the FK model.

The FK model studied in ref. 1 has, however, one more aspect con-
nected with the existence of external damping in Langevin equations. When
the damping coefficient rj is large, the atom after the jump stops in the
new potential well. But if r\ is small, there exists a threshold force
F b ( F b = l -v/fwe. m being the atomic mass) such that at F>Fb the atom
after the jump does not stop but continues to move till it meets a stopper,
e.g., a thermalized atom in front of itself. To incorporate this feature into
the lattice gas model, we assume that an atom may be in two different



states, in the "thermalized" state, in which it jumps as usual in the LG
model, and in the "running" state, in which the atom always jumps to the
right provided the right-hand site is empty. Thus, the new model incor-
porates the features of both partially and totally asymmetric models.

The important aspect of the model introduced in the present work, is
that an atom can change its state from the thermalized state to the running
state and vice versa: the thermalized atom becomes in the running state
after the jump to the right, and the running atom becomes thermalized
after a collision with another thermalized atom. Models with multiple
states belong to cellular automata type models which are used last time in
simulation of highway traffic (e.g., see recent survey(4). Because the atoms
in the model under consideration behave like vehicles in a one-lane road,
the present model may also be considered as a new variant of the traffic-
jam model.

We consider three slightly different variants of the evolution rules, and
call the corresponding models as the model A, B, and C respectively. The
simplest model A already exhibits the nonlinear mobility, irreversibility,
and shows the appearance of "traffic jams" (bunching of thermalized
atoms). A more realistic model C, additionally, has a hysteresis which
resembles that of the FK model. All three models are studied with Monte
Carlo technique as well as analytically within a mean-field approximation.

2. MODEL A

The simplest model studied in the present work is defined as follows.
Consider a one-dimensional lattice of length M with the periodic boundary
conditions. Each site is either occupied by one atom or is empty. Let N is
the total number of atoms, and the dimensionless concentration is defined
as 9 = N/M. Each atom may be in one of two states, in the thermalized
state or in the running state. The system evolves in time according to the
sequential dynamics, i.e., particles jump independently and randomly
according to the following rules:

AI. At each time step t->t+1, one chooses at random a site i.
AIL If this site is occupied by a thermalized atom, it jumps to the

site i+ 1 (if this site is empty) with the probability a, or it jumps to the site
i — 1 (if the left-hand site is empty) with the probability 1 —a as in the par-
tially asymmetric exclusion model. After the jump to the left the atom
remains in the thermalized state, while after the jump to the right the atom
becomes in the running state.

AIII. If the atom in the chosen site i is in the running state, it jumps
to the right provided the right-hand site is empty, and remains in the

Traffic Jams in a Lattice-Gas Model 631



running state. Otherwise, if the site i + 1 is not empty, the atom in the site
i remains in the running state if the right-hand site is occupied by the
running atom, or becomes thermalized if the site i + 1 is occupied by the
thermalized atom.

Thus, the model A is characterized by two parameters, 6 and a. A typi-
cal picture of system evolution started from a random distribution of ther-
malized atoms, is shown in Fig. 1. As seen, from the very beginning the
system splits into compact domains of thermalized and running atoms. The
immobile (thermalized) domains are characterized by the local atomic con-
centration 6, = 1. Below we will call these immobile domains by jams. The

Fig. 1. Evolution of the model A. Thermalized atoms are shown as black circles, and
running atoms, as grey circles. Time is measured in Monte Carlo attempts per site. The system
size is M= 103 ,0 = 0.8, and a = 0.7.

632 Braun and Hu



Traffic Jams in a Lattice-Gas Model 633

jams are separated by running domains (RD's) characterized by a local
concentration Or < 0.

To characterize the system state, let us introduce the "mobility" B as
the ratio of the number of running atoms Nr to the total number of atoms N,
B= Nr/N. The dependences of B on a for different values of 0 are shown
in Fig. 2.

The behavior of the running domains of the present model should
remind that of the totally asymmetric exclusion model with open boundary
conditions.(3) Recall that in the totally asymmetric exclusion model all
atoms are of the running type, and an atom may come into the chain from
the left-hand side (if the most left site is empty) with a probability a, and
the atom from the most right site may leave the chain with a probability /?.
Note, however, that the running domains of the present model are not
equivalent to the totally asymmetric exclusion model because of different
(more simple in the present work) boundary conditions. According to the

Fig. 2. Mobility B as function of the jump probability a for different values of I): 0 = 0.65
(diamonds), 0 = 0.80 (triangles), and 0 = 0.95 (squares). Each data point is an average over
5 x 103 attempted jumps per site, the averaging was started after 5 x 103 MC steps. The data
were averaged additionally over 28 independent runs. The system size is M = 103. Solid curves
are the predictions of Eq. (6).
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rules accepted for the model A, the most left site of any RD is always
empty (this is clearly seen in Fig. 1). Therefore, the running domain grows
from its left-hand side with the rate a owing to injection of new atoms from
the left-hand-side neighboring jam. At the right-hand side of the RD, the
atom which occupies the most right site of the RD, leaves the RD and joins
itself to the neighboring right-hand-side jam. Thus, the RD shorters from
the right-hand side with the rate pr, where pr is the probability that the
most right site of the RD is occupied. Clearly, in the steady state pr = «..

To calculate B, let us assume that there is only one jam in the chain.
Let this jam has the length s. Because the local concentration in the jam
is 6,= 1, we can apply the following simple arithmetic,(1) is

where Mr is the length of the running domain. Taking into account that
Nr = M,6r and TV = MB, we obtain

so that the mobility is equal to

Evidently, Eq. (4) is valid as well for the steady state with any number of
jams provided 6r corresponds to the mean atomic concentration in RD's.

Neglecting by a possible deviation of the RD concentration at its
right-hand side from the mean value 0r, we may take approximately

and taking then into account that pr = a in the steady state, we finally come
to the expression

For a > 6 the jams disappear at all, and B = 1 in the steady state. The
dependences (6) which are shown by solid curves in Fig. 2, describe the
simulation results with a good accuracy.

The model A described above is similar to the Nagel-Schreckenberg
(NS) "minimal" model of real traffic.(5) The present model differs from the
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NS one in two aspects: first, we are using the sequential dynamics contrary
to the "parallel update" of the NS model, and second, the low-velocity state
of our model corresponds to thermalized atoms while in the NS case it
corresponds to immoxbile cars. Both these features are natural for the
system of atoms in contact with thermal bath.

If we introduce the atomic flux as j = 6v, where v is the average
velocity of atoms (this is the standard expression for the LG model), then
the main issue of the traffic theory, the fundamental diagram (flux versus
density) takes the trivial form j = 6(1 — 6). However, in a spirit of the FK
model, where all atoms in the running domain move simultaneously, it is
more natural to define the "flux" as j = 9B, where the "mobility" B was
introduced above. For this definition of j, the fundamental diagram takes
the triangular shape, j=0 for <9<<x and j = (1 -<9)a/(1 -a) for #>a,
which is similar to that of real traffic(41).

Now let us dwell on the steady state of the present model in more
details. A jam of length s loses atoms from its right-hand side with the

Fig. 3. Distribution of jam sizes at different times: t = 10 (dotted curve), t = 102 (dashed
curve), t=103 (dot-dashed curve), and t=104 (solid curve). Chain's length is M= 103,
0 = 0.8, and a = 0.7. The histograms were averaged over 100 independent runs.
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rate a, and it receives new atoms to the left-hand side with the rate pr.
These two rates are equal one another in the steady state, so in average
< s ( t ) > = 0 . But because of randomness of joining and losing events, the
value s(t) will exhibit random walks, i.e., at long times, t» 1, t' » 1, and
|t — t'| » 1, s(t) should behave according to the equation

Thus, at a < 0 the infinite system has no steady state at all. Indeed,
when a jam reaches the size s = 0, it disappears forever, while the motion
of s(t) to higher values is not bounded in the infinite system. The distribu-
tion of jam sizes P(s) continuously changes with time shifting to larger and
larger values as shown in Fig. 3, so that instead of the name "steady state"
it is more reasonable to use the name "coarsening state". But the mobility
of the coarsening state does not change with time as seen from Fig. 4.
According to Eq. (6), B is determined by the system parameters only and
does not depend on the distribution P(s).

Fig. 4. Typical dependence B(t) for a long-time simulation (t> 107). The system size is
M=103, 0 = 0.8, and a = 0.7.
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On the other hand, a finite system does have a true steady state, and
this state corresponds to the absence of jams at all for any model
parameters. Indeed, in a finite system the maximal jam's size is restricted by
the value given by Eq. (3), and after a long enough time T all jams should
finally disappear. A typical dependence B(t) is shown in Fig. 5. The average
value of T can be estimated from the relation s2 = 2a<r>, that leads to the
expression

The distribution P(r) of the "first passage times" to reach the running state
is shown in Fig. 6 together with the estimation (8).

The transition to the running state in the model A is of second order
in the sense that the current changes continuously at the point a = 6.
However, the simplest model exhibits a "trivial" hysteresis: as far as all

Fig. 5. Dependence B(t) in a finite system: in the model A the transition to the running state
is irreversible. Chain's length is M = 300, 0 = 0.8, and a = 0.7.
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Fig. 6. Distribution of times of reaching of the running state in chains of different lengths:
M = 20 (diamonds), M=50 (triangles), and M = 80 (squares). The system parameters are
9 = 0.8 and a = 0.7. The histograms were averaged over 200 independent runs. Broken lines
indicate the times predicted by Eq. (8).

atoms came into the running state, this state then remains unchanged
forever, even if oc is changed back to lower values. In this sense the tran-
sition may be considered as of first order.

3. MODEL B

Keeping in mind to describe qualitatively the behavior of the FK
model mentioned at the beginning of the article, let us improve the model
A to make it more realistic, allowing the running atoms to change spon-
taneously their state back to the thermalized state with some probability y.
Indeed, in the model A the transition of an isolated atom to the running
state was irreversible. This is true for large driving forces F> Ff , i.e., for the
<x= 1 case. But at smaller forces, F<Ff , or <x< 1, an isolated atom must
have a nonzero probability to come back to the thermalized state. For this
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reason we now slightly modify the third rule of system evolution in the
following way:

BIII. If the atom in the chosen site i is in the running state, it comes
to the thermalized state with the probability y(y < 1), or evolves according
to the rule AIII with the probability 1 — y.

The dependences B(a) for different values of y are shown in Fig. 7. The
model B has the true steady state, and B < 1 for any model parameters
provided y > 0.

To describe the model B analytically, we use the mean-field (MF)
approach and suppose that all running domains are characterized by the
same concentration 6r. Besides, suppose also that the probability of
occupation of the most right site of the running domain is equal 6r as
above in Eq. (5). With these assumptions, a jam of length s increases
( s - > s + 1 ) with the rate #,, and decreases ( s - > s - 1 ) with the rate a.

Fig. 7. B versus a for the model B for different values of y: j>= 10-1 (squares), y= 10 - 2 (tri-
angles), and y = 10-3 (diamonds). 0 = 0.8, and the system size and statistics are as in Fig. 2.
The dependences (13) are shown by solid curves. The y = 0 dependence (6) is also shown by
broken curve.
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Denoting by n s ( t ) the number of jams of length s at time t, we can write
the following kinetic equation for ns(t),

In the continuum limit, ns» 1, Eq. (9) reduces to the diffusion equation

with the "drift" coefficient // = a - 9r. In the model B we always have n > 0
because n1 is finite due to creation of new thermalized atoms in contrast
with the model A, where it was n1 -> 0 in the limit t-» oo.

Equation (9) has a simple steady state solution ns = n 1 ( 8 r / « . ) s - 1 . The
distribution of jam's sizes is described by the expression

where J =^ns = n 1 y . / (y . — 0r) is the total number of jams. As seen from
Fig. 8, Eq. (11) describes the simulation data quite well.

The total number of thermalized atoms is equal to

Applying now the same arithmetic as above in Eq. (2), we can find the
mobility,

and the average concentration in the running domains,

which depend on the parameter p defined as
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Fig. 8. Distribution of jam's sizes in the model B for y = 0.01. Chain's length is M= 104,
#=0.8, a = 0.7, and the simulation time is t= 104. The histogram is an average over 100 inde-
pendent runs. Line corresponds to the estimation of Eq. ( 1 1 ) .

To complete the set of equations, we have to write a kinetic equation
for n1(t) which plays a role of boundary condition for Eqs. (9). It may be
written as follows:

The first term in the right-hand side of Eq. (16) describes the creation of
thermalized atoms from the running atoms, and the other terms have the
same meaning as in Eq. (9) except that now n0 = 0 and the rate of disap-
pearing of one-atomic jams is not a but a(1 — 8,.), because these jams are
emerging mostly inside the running domains, and the condition that the
next-neighboring site to the right of the one-atomic jam is empty, is not
valid anymore.

The steady state solution of Eq. (16) is
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Substituting (17) into Eqs. (14-15), we obtain an equation on 0r,

which may easily be solved numerically. The MF dependences B(ct) are
presented in Fig. 7.

The MF approach used above, was based on the assumption that all
running domains are characterized by the same local concentration 0,.. This
assumption is true for the model A, where in the limit t -> oo the average
size of RD is growing unboundedly. But for the model B, where n1 must
have a finite value, this assumption is not valid, this is clearly seen in Fig. 9.
Most of RD's are characterized by simple rational concentrations like 1, 2,
etc. In spite of this, the agreement of the MF approach with simulation
data is surprisingly good.

Last, note that the model B has no irreversibility anymore, the y ̂  0
condition totally kills the hysteresis presented in the model A.

Fig. 9. Number of running atoms in running domains with a given concentration <>,. as
function of (),. The parameters are as in Fig. 8.
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4. MODEL C

In the model B the spontaneous transition of an atom from the
running state to the thermalized state does not depend on the state of sur-
rounding atoms. This is true for the transition of an isolated atom, but
is too crude approximation for the FK system which we are trying to
model. Indeed, when an atom inside a RD became thermalized, it will be
immediately pulled back to the running state by the running atoms behind
it. This "inertia" effect can not be described rigorously in the framework of
a lattice-gas model. But let us try to simulate this effect qualitatively,
modifying the third evolution rule in the following way:

CIII. In the case when a randomly chosen site i is occupied by a
running atom and the site i + 1 is occupied by a thermalized atom, we will
count the total number s of thermalized atoms in the compact jam to the
right of the bond i — (i+ 1), and the number r of running atoms behind this
bond in the compact running block, i.e., s is the distance from the bond
i—(i+ 1) to the first empty site in the positive x direction, and r is the
same distance in the negative x direction. Then the system is updated
according to the following rule: if r < s, all r + s atoms become thermalized,
otherwise (if r > s ) , all r + s atoms "belonging" to the i — ( i + 1 ) bond,
become running. In all other cases the system evolves similarly to the
model B, i.e., if the site i— 1 is empty, the atom either comes to the ther-
malized state with the probability y, or remains in the running state with
the probability 1 — y, jumping to the right provided the site i + 1 is not
occupied.

Besides, let us make one more improvement of the model. As was
mentioned above, the rate of spontaneous transition to the thermalized
state should depend on the external force F, i.e., on the inclination of the
periodic substrate potential; it must be zero for F>Ff and it has to
increase with F decreasing in the region F<Ff. In the lattice-gas model,
this means that y should be zero at a = 1 but has to increase when a
decreases. For concreteness, let us take the simple expression

where y0 is a model parameter. We took the square dependence in order to
avoid an unphysical peculiarity in the a -» 1 limit.

The simulation results for the model C are presented in Fig. 10. One
can see that the 5(a) dependences of this model are very close to those of
the model A (or the model B with a very small y). The explanation of this
behavior is simple: in the model C one-atomic jams have practically no
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Fig. 10. Mobility B(a.) for the model C for different values of 0: 0 = 0.65 (diamonds),
0 = 0.80 (triangles), and 9 = 0.95 (squares). For each 0 the simulation was started from the
random configuration of thermalized atoms at a = 0.5, then the final configuration of the pre-
vious step was used as the initial configuration for the next value of a. Solid curves correspond
to the increasing of a, and the dotted curves, to its decreasing. Each data point is an average
over 1.5 x 103 attempted jumps per site, the averaging was started after 1.5 x 103 MC steps.
The data were averaged additionally over 30 independent runs. The system size is M= 103,
and j>0 = 0.1. The dashed curves correspond to Eq. (6) of the model A.

chances to survive, and this results in a very small values of n1 just as it
was in the model A.

The main new feature of the model C is that it has a nontrivial
hysteresis similarly to that of the FK model.(1) When a decreases starting
from the a = 1 value, the state without jams (the running state, or RS) sur-
vives at values of a lower than 0 before the RS jumps back to the state with
jams (the jam state, or JS). As seen from Fig. 10, the width of the hysteretic
loop depends on the concentration 6, for higher values of 6 the loop is
wider. Besides, the amplitude of hysteresis depends on the rate of a
variation as seen in Fig. 11. A slower a is changed, a more narrow is the
hysteretic loop, so that for the adiabatically slow variation of a the
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Fig. 11. Hysteresis in the model C for different simulation times: squares and solid curve, for
an averaging over 0.5 x 103 MC steps per site, the averaging started after 0.5 x 103 steps, tri-
angles and dotted curve, for an averaging over 1.5x 103 steps, the averaging started after
1.5 x 103 steps, and diamonds and dashed curve, for an averaging over 5 x 103 MC steps, the
averaging started after 5x 103 steps. Chain's length is M= 103, # = 0.8, y0 = 0.1, the data were
averaged additionally over 30 independent runs.

hysteresis should disappear at all. This means that the running state of the
system at a < 9 is in fact a metastable state characterized by a finite lifetime
Tr. The distribution of lifetimes xr of the running state is shown in Fig. 12.

To estimate a mean value of rr analytically, let us consider a state with
a single jam of size s at time t. This jam will be killed in the next MC step
t+1, if just behind it there is a compact block of running atoms of a size
r > s. In the RS the probability to have such a block of running atoms is
9s. Thus, at the time t + 1 the .s-atomic jam will disappear with the prob-
ability 9s, and it will survive till the next time step with the probability
1 - 6s. Therefore, in average the s-atomic jam will survive if 1 — 0s ^ 6X, or
s > s 0 , where the critical size so is equal to

645
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Fig. 12. Distribution of times Tr, of transition from the totally running state to a state with
jams for the model C. The system size is M = 103, 0 = 0.8, a = 0.7, and y0 = 0.1. The hystogram
was calculated with 8x 103 points, each simulation was started from the initial configuration
of running atoms, then it was "equilibrated" at <x= 1 during the time 103 MC steps, after that
a was abruptly decreased to the value a = 0.7, and the simulation was stopped when B reaches
the value B = 0.9 for the first time. Broken line shows the prediction of Eq. (21).

Now let us suppose that at the time t-1 the chain was in the running
state, and calculate the probability that at the time t the chain has a jam
of the size s0. For one MC step, the number of newly created thermalized
atoms is yN (recall Nr = N in the RS), so that the probability for a given
site to be occupied by one thermalized atom, is yN/M = yO. Therefore, the
probability that at a given place it will appear the s0-atomic jam, is ( y O ) s 0 .
Taking now into account that for the transition to the JS the chain may
have only one jam, we obtain that in the chain of length M the probability
of the RS ->JS transition per one MC step is M ( y 0 ) s 0 .Therefore, we come
to the expression



Although the estimation (21) is crude, it predicts a correct value of <r,.>
for the model parameters used in Fig. 12, as well as it demonstrates a right
tendency for variation of the hysteretic loop with 6.

Eq. (21) shows that the infinite system should have no hysteresis at all.
This simply is the consequence of one-dimensionality of the model. Indeed,
at a < 6 for any small but nonzero probability of creation of the s0-atomic
jam, at least one jam will certainly be created per each time step, and this
jam will cause the RS -»• JS transition.

On the other hand, the behavior of a finite system is more interesting.
According to Eq. (21), the timelife of the RS is Tr oc M-1 ,while the timelife
of the JS is T oc M2 as follows from Eq. (8). Therefore, at a < 0 the state of
a finite system should be bistable, time to time the chain should jump from
RS to JS and back. The simulation results shown in Fig. 13 confirms this
prediction.

Fig. 13. Dependence B(t) for the model C. The system size is M = 300, 0 = 0.8, a = 0.7, and
y0 = 0.1.
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5. CONCLUSIONS

Thus, we developed the new variant of the "traffic jam" model which
successfully simulates the behavior of a more realistic but much more com-
plicated FK model(1). This model has a nonlinear dependence of mobility
on the jump probability a, exhibits hysteresis, and describes the kinetics of
organization of thermalized atoms into compact domains (jams). At the
same time, being much simpler that the FK model, the LG traffic-jam
model allows to simulate much larger systems on a much longer time scale,
and also to develop the MF theory which explains the simulation results
with a reasonable accuracy.

However, in difference with the FK model, the LG traffic-jam model
studied in the present work, has no interatomic interaction except the tri-
vial hard-core repulsion. As a consequence, the LG model cannot simulate
a concerted motion of atoms of the FK model, the atomic jumps in the LG
model are not correlated. Both these factor, the interatomic interaction and
the concerted atomic motion, should increase the stability of the locked
and running states, so that in the FK model the hysteresis exists in a much
wider parameter range.

Finally, mention that the model studied in the present work, is the
one-dimensional model. The percolation threshold in one-dimensional
models is zero, i.e., even a single defect (jam in the present model) totally
kills the conductivity (the running state). Which of the features of the
model behavior will persist in a two-dimensional model, is the subject of a
next work.
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